7.1 Isometric vs. Similar Figures

- ISOMETRY is a transformation that preserves side lengths and angle measurements. Examples:

Rotation, Reflection or a composite of them

- The result (image) and the original are called ISOMETRIC FIGURES or CONGRUENT FIGURES (notation: \cong)
- SIMILITUDE is a transformation that results in a similar figure, but bigger/smaller in size. Example: Dilatation
- The result (image) is SIMILAR (notation: ~) to the original: angles are congruent (to preserve the shape), but sides are pronprtational.

The Sierpinski triangle is made entirely of SIMILAR triangles.

All of the triangles in this shape are SIMILAR because...
(1) All of the triangles contain the same angles.
(2) All of the side lengths of a triangle are scaled down by the same ratio of similarity k

Ratio of similarity (scale factor): k

The ratio of similarity (scale factor) is
$k=\frac{\text { side length from the image }}{\text { side length from the original figure }}$
$k=\frac{l_{\text {new }}}{l_{\text {old }}}=\frac{s^{\prime}}{s}$

Given that $\triangle A B C \sim \triangle D E F$, find $m \Varangle A$, $m \Varangle F$, and sides c and d.

Ex I: Finding an unknown side given 2 similar triangles

Practice: p. 216 \# 1-5

7.1-B- Ratios of perimeters and areas

k	k^{2}	k^{3}
2	25	
$\frac{2}{7}$		27
	$\underline{9}$	
		$\frac{8}{27}$

Understanding the perimeter ratio of two similar rectangles
Ex 1: Figures A and B
are similar

Understanding the area ratio of two similar circles

Ex 2 :

Application of Similar Triangles

The 3 great pyramids of Egypt are Khufo, Khafre, Menkaure

Their heights were unknown for over 2000 years, until about 600 BC , when Thales of Miletus, a Greek Mathematician calculated it.

Height of Pyramid (Imaginary Post) $=$
Thales Height Thales Shadow

Thales Hetght Thales Shadow
$\frac{2 \text { paces }}{3 \text { paces }}$
(In his days they were measuring in cubits instead of m; 1 cubit $=44.16 \mathrm{~cm}$ which is about 1 arm length)

He measured the length of the base and the length of the shadow. He then placed a 2 m stick at the end of the shadow and measured its shadow, it was 4 m long.

Since the sun creates equal angles on the ground, we have similar triangles: $\triangle A B C \sim \triangle T U B$;

Since the sun creates equal angles on the ground, we have similar triangles: $\triangle A B C \sim \Delta T U B$;
$U V=230 / 2=115$;
so $U B=115+179=294 m$

Practice: page 218 \# 6-10

7.2 Similar Solids and Ratios

- Two solids are isometric if all corresponding angles and edges are congruent.
- Two solids are similar if all corresponding angles are congruent, and corresponding edges are proportional.
- Recall:
- If the ratio between 2 similar solids is $\mathrm{k}\left(\frac{s t}{s}=k\right)$
- Then the ratio of Areas is $\mathrm{k}^{2}\left(\frac{A^{\prime}}{A}=\left(\frac{s}{s}\right)^{2}=k^{2}\right)$
- And the ratio of Volumes is $\mathrm{k}^{3}\left(\frac{V^{\prime}}{V}=\left(\frac{s^{\prime}}{s}\right)^{3}=k^{3}\right)$

Steps to solve a problem:

- First step is: find k then find k^{2} and/or k^{3}
- to find a missing side:
- write the ratio of sides $=k$; then cross multiply
- to find a missing area:
- write the ratio of areas $=k^{2}$; then cross multiply
- to find a missing volume:
- write the ratio of volumes $=k^{3}$;then cross multiply
- Note: Keep the image always on top in your ratios

Ex 1: find the volume of the bigger

 prism$K=\frac{3}{2}$

$V=16 \mathrm{~cm}^{3}$

K (sides)	k^{2} (areas)	k^{3} (volumes)
$\frac{3}{2}$ (given)	$\frac{9}{4}$	$\frac{27}{8}$

!
$\frac{1}{1}$
V

Ex 2: Determine the area of the base of the small cylinder if the two cylinders are similar.

Practice:
p. 221 \# 1,2
p. 222 \# 10-15

Shown below are two similar right prisms, each with a rectangular base.
The lengths, in centimetres, of the sides of the base of the smaller prism can be represented by the monomial (x) and the binomial $(2 x+3)$ respectively. In this case, the volume of the smaller prism, in cm^{3}, is represented by the polynomial $\left(6 x^{3}+9 x^{2}\right)$.

The height of the larger prism is 96 cm . The total area of the larger prism is 64 times the area of the smaller prism.

